How many line segments can be drawn between 12 noncollinear points?
Suppose those 12 noncollinear points are labeled
A,B,C,D,E,F,G,H,I,J,K,L. Then every possible combination of 2 letters from that set
of 12 indicates a different line segment. So
the answer is
The number of combinations of 12 things taken 2 at a time, aka
12 Choose 2
or aka
12C2
or aka
C(12,2)
which is calculated
or
or
66. Here are all 66 line segments listed below.
1. AB
2. AC
3. AD
4. AE
5. AF
6. AG
7. AH
8. AI
9. AJ
10. AK
11. AL
12. BC
13. BD
14. BE
15. BF
16. BG
17. BH
18. BI
19. BJ
20. BK
21. BL
22. CD
23. CE
24. CF
25. CG
26. CH
27. CI
28. CJ
29. CK
30. CL
31. DE
32. DF
33. DG
34. DH
35. DI
36. DJ
37. DK
38. DL
39. EF
40. EG
41. EH
42. EI
43. EJ
44. EK
45. EL
46. FG
47. FH
48. FI
49. FJ
50. FK
51. FL
52. GH
53. GI
54. GJ
55. GK
56. GL
57. HI
58. HJ
59. HK
60. HL
61. IJ
62. IK
63. IL
64. JK
65. JL
66. KL
Edwin