SOLUTION: 1. 137+6y=-y^2-x^2-24x 2. x^2+y^2+14x-12y+4=0 3. y^2+2x+x^2=24y-120 4. x^2+2x+y^2=55+10y 5. 8x+32y+y^2=-263-x^2

Algebra ->  Circles -> SOLUTION: 1. 137+6y=-y^2-x^2-24x 2. x^2+y^2+14x-12y+4=0 3. y^2+2x+x^2=24y-120 4. x^2+2x+y^2=55+10y 5. 8x+32y+y^2=-263-x^2      Log On


   



Question 1209799: 1. 137+6y=-y^2-x^2-24x
2. x^2+y^2+14x-12y+4=0
3. y^2+2x+x^2=24y-120
4. x^2+2x+y^2=55+10y
5. 8x+32y+y^2=-263-x^2

Found 2 solutions by timofer, CPhill:
Answer by timofer(104) About Me  (Show Source):
You can put this solution on YOUR website!
Use the previous response which was for your equation 1 here. You want to complete the squares if necessary and put equation into the needed form. Decide then what it is or make the graph.

Answer by CPhill(1959) About Me  (Show Source):
You can put this solution on YOUR website!
The provided equations are not in the standard form of a circle, which is (x - h)^2 + (y - k)^2 = r^2, where (h, k) is the center and r is the radius. I'll first convert them to the standard form and then plot them using Altair.
1. **137 + 6y = -y^2 - x^2 - 24x**
Rearranging the terms, we get x^2 + 24x + y^2 + 6y = -137
Completing the square for x, we add (24/2)^2 = 144 to both sides: x^2 + 24x + 144 + y^2 + 6y = -137 + 144
Completing the square for y, we add (6/2)^2 = 9 to both sides: x^2 + 24x + 144 + y^2 + 6y + 9 = -137 + 144 + 9
Simplifying, we get (x + 12)^2 + (y + 3)^2 = 16 = 4^2
So, the center is (-12, -3) and the radius is 4.
2. **x^2 + y^2 + 14x - 12y + 4 = 0**
Rearranging the terms, we get x^2 + 14x + y^2 - 12y = -4
Completing the square for x, we add (14/2)^2 = 49 to both sides: x^2 + 14x + 49 + y^2 - 12y = -4 + 49
Completing the square for y, we add (-12/2)^2 = 36 to both sides: x^2 + 14x + 49 + y^2 - 12y + 36 = -4 + 49 + 36
Simplifying, we get (x + 7)^2 + (y - 6)^2 = 81 = 9^2
So, the center is (-7, 6) and the radius is 9.
3. **y^2 + 2x + x^2 = 24y - 120**
Rearranging the terms, we get x^2 + 2x + y^2 - 24y = -120
Completing the square for x, we add (2/2)^2 = 1 to both sides: x^2 + 2x + 1 + y^2 - 24y = -120 + 1
Completing the square for y, we add (-24/2)^2 = 144 to both sides: x^2 + 2x + 1 + y^2 - 24y + 144 = -120 + 1 + 144
Simplifying, we get (x + 1)^2 + (y - 12)^2 = 25 = 5^2
So, the center is (-1, 12) and the radius is 5.
4. **x^2 + 2x + y^2 = 55 + 10y**
Rearranging the terms, we get x^2 + 2x + y^2 - 10y = 55
Completing the square for x, we add (2/2)^2 = 1 to both sides: x^2 + 2x + 1 + y^2 - 10y = 55 + 1
Completing the square for y, we add (-10/2)^2 = 25 to both sides: x^2 + 2x + 1 + y^2 - 10y + 25 = 55 + 1 + 25
Simplifying, we get (x + 1)^2 + (y - 5)^2 = 81 = 9^2
So, the center is (-1, 5) and the radius is 9.
5. **8x + 32y + y^2 = -263 - x^2**
Rearranging the terms, we get x^2 + 8x + y^2 + 32y = -263
Completing the square for x, we add (8/2)^2 = 16 to both sides: x^2 + 8x + 16 + y^2 + 32y = -263 + 16
Completing the square for y, we add (32/2)^2 = 256 to both sides: x^2 + 8x + 16 + y^2 + 32y + 256 = -263 + 16 + 256
Simplifying, we get (x + 4)^2 + (y + 16)^2 = 9 = 3^2
So, the center is (-4, -16) and the radius is 3.
Now, I'll use Altair to plot these circles.
```python
import altair as alt
import pandas as pd
import numpy as np
# Define the center and radius of each circle
circles = [
{'center': (-12, -3), 'radius': 4, 'name': 'Circle 1'},
{'center': (-7, 6), 'radius': 9, 'name': 'Circle 2'},
{'center': (-1, 12), 'radius': 5, 'name': 'Circle 3'},
{'center': (-1, 5), 'radius': 9, 'name': 'Circle 4'},
{'center': (-4, -16), 'radius': 3, 'name': 'Circle 5'}
]
# Create a list to hold the data for all circles
all_circles_data = []
for circle in circles:
# Generate points on the circle circumference
theta = np.linspace(0, 2 * np.pi, 100)
x_circ = circle['center'][0] + circle['radius'] * np.cos(theta)
y_circ = circle['center'][1] + circle['radius'] * np.sin(theta)
# Create a DataFrame for the circle data
circle_data = pd.DataFrame({
'x': x_circ,
'y': y_circ,
'Circle': circle['name']
})
all_circles_data.append(circle_data)
# Concatenate all circle DataFrames into a single DataFrame
all_circles_df = pd.concat(all_circles_data)
# Create the Altair chart
chart = alt.Chart(all_circles_df).mark_circle().encode(
x=alt.X('x', axis=alt.Axis(title='X-axis')),
y=alt.Y('y', axis=alt.Axis(title='Y-axis')),
color='Circle', # Use color to differentiate circles
tooltip=['Circle', 'x', 'y']
).properties(
title='Circle Plots'
)
# Save the chart
chart.save('circle_plots.json')
```
This code will generate a JSON file that can be opened in any web browser to view the interactive plot of the circles.