SOLUTION: The radius of the inner circle is 1cm and the radius of the outer circle is 6cm. Calculate the area of the major arc, given that its arc substend 312degree at the centre of the cir

Algebra ->  Circles -> SOLUTION: The radius of the inner circle is 1cm and the radius of the outer circle is 6cm. Calculate the area of the major arc, given that its arc substend 312degree at the centre of the cir      Log On


   



Question 1135822: The radius of the inner circle is 1cm and the radius of the outer circle is 6cm. Calculate the area of the major arc, given that its arc substend 312degree at the centre of the circle
Found 2 solutions by greenestamps, ikleyn:
Answer by greenestamps(13203) About Me  (Show Source):
You can put this solution on YOUR website!


Either the inner circle is irrelevant to the problem; or you have left something out of the statement of the problem.

A segment of a circle of radius 6 that is determined by a central angle of 312 degrees has an area that is 312/360 of the area of the whole circle.

%286%5E2%2Api%29%2A%28312%2F360%29

Use your calculator....

Answer by ikleyn(52812) About Me  (Show Source):
You can put this solution on YOUR website!
.

Regarding this post, I have two notes/comments.

1.  The "arc" as a geometric object DOES NOT HAVE AREA.

    The notion AREA is not determined/defined for "arc".



2.  Mathematically, this formulation is totally dark and MAKES NO SENSE.