Lesson Angle in a semicircle
Algebra
->
Circles
-> Lesson Angle in a semicircle
Log On
Geometry: Circles and their properties
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Angle in a semicircle'
This Lesson (Angle in a semicircle)
was created by by
hummingbird(0)
:
View Source
,
Show
About hummingbird
:
<b>Theorem:</b> An angle inscribed in a <A HREF=Semi_circle.wikipedia>Semi-circle</A> is a right angle. {{{drawing( 260, 260, -1, 6, -1, 5.0, line( -.5, 2,4.5,2),line( .8, 3.9,2,2), line( .8, 3.9,-.5,2),line( .8, 3.9,4.5,2), locate( .75, 3.7,x),locate( 1.2, 3.7,y), locate( 3.6,2.4, y),locate( -.1,2.4,x),locate( -.75,2,B),locate( 2,2,C),locate( 2.1,2.4,z),locate( 1.5,2.4,w),locate( 4.6,2,D), locate( .75,4.3,A), red(circle( 2, 2,.1 )), circle( 2,2,2.5))}}} In the above diagram, We have a circle with center 'C' and radius AC=BC=CD. Angle inscribed in semi-circle is angle <b>BAD</b>. To proof this theorem, Required construction is shown in the diagram. Draw the lines AB, AD and AC. Now there are three triangles <b>ABC</b>, <b>ACD</b> and <b>ABD</b>. Angles of the triangles are shown in the diagram. Observe that triangle <b>ABC</b> and <b>ACD</b> are <A HREF=Isosceles_triangle.wikipedia>Isosceles triangle</A>. In triangle <b>ABC</b> {{{BC=AC}}} Angles in front of these lines are also same (Call it x)............(Property of isosceles triangle) Similarly, In triangle <b>ACD</b> {{{AC=DC}}} Angles in front of these lines are also same (Call it y)............(Property of isosceles triangle) Now again consider triangle <b>ABC</b>: Sum of all three angles in the triangle is 180.............................(Property of triangle) Hence {{{x+ y + w= 180}}} {{{w = 180-(x+ y)}}}..........................................................(1) Similarly, In triangle <b>ACD</b>: {{{x+ y + z= 180}}} {{{z = 180-(x+ y)}}}..........................................................(2) After adding equation number (1) and (2), {{{w + z= 360 - 2*(x+y)}}}..................................................(3) Observe, BCD is a straight line. Hence, Angle(BCD) is a <A HREF=Straight_angle.wikipedia>straight angle</A>. {{{w + z = 180}}}.............................................................................................(Property of Straight Angle) Now, plug the valve of Angle(w+z) in equation number (3) {{{180 = 360 - 2*(x+y)}}} {{{2*(x+y)=180}}} {{{x+y =90}}} Hence, Angle(BAD) is <A HREF=Right_angles.wikipedia>right angle</A>. Proof Ends!!! For more information on Circle refer to <A HREF=Circle.wikipedia>wikipedia</A>.