SOLUTION: Just simply rewrite the given equation to its standard form of quadratic equation then find the value of a, b and c x^2+2=5-2x^2

Algebra ->  Quadratic Equations and Parabolas -> SOLUTION: Just simply rewrite the given equation to its standard form of quadratic equation then find the value of a, b and c x^2+2=5-2x^2      Log On


   



Question 1171033: Just simply rewrite the given equation to its standard form of quadratic equation then find the value of a, b and c
x^2+2=5-2x^2

Found 2 solutions by MathLover1, ikleyn:
Answer by MathLover1(20849) About Me  (Show Source):
You can put this solution on YOUR website!

The Standard Form of a quadratic equation looks like this:
Quadratic Equation: ax%5E2+%2B+bx+%2B+c+=+0

x%5E2%2B2=5-2x%5E2
x%5E2%2B2x%5E2%2B2-5=0
3x%5E2%2B2x%5E2-3=0

Answer by ikleyn(52778) About Me  (Show Source):
You can put this solution on YOUR website!
.
Just simply rewrite the given equation to its standard form of quadratic equation then find the value of a, b and c
x^2 + 2 = 5 - 2x^2
~~~~~~~~~~~~~


Move the terms from the right to the left side, changing the sign.


Then combine common terms.


You will get


    3x^2 - 3 = 0.


It is just in the standard form.


    a= 3, b= 0, c= -3.

Solved, answered, explained and completed.


-------------

Ignore the post by @MathLover1, since it is WRONG.