SOLUTION: \[f(\sqrt{x + 1}) = \frac{1}{x}\] for all $x \ge -1,$ $x\neq 0.$ Find $f(2)$.

Algebra ->  Quadratic Equations and Parabolas -> SOLUTION: \[f(\sqrt{x + 1}) = \frac{1}{x}\] for all $x \ge -1,$ $x\neq 0.$ Find $f(2)$.      Log On


   



Question 1041054: \[f(\sqrt{x + 1}) = \frac{1}{x}\]
for all $x \ge -1,$ $x\neq 0.$ Find $f(2)$.

Answer by MaxWong(38) About Me  (Show Source):
You can put this solution on YOUR website!
To find f(2), We have to set sqrt(x+1) = 2
sqrt%28x%2B1%29=2
x%2B1+=4
x=3
f(sqrt(x+1))=1/x
f(sqrt(3+1))= 1/3
Therefore f(2) = 1/3