# SOLUTION: Rewrite & simplify the given expression using positive exponents only. (square root x^-5 + x^-5y^7z^-2)(x^9y^-2z^9) Only x^-5 is a square root

Algebra ->  Algebra  -> Exponents-negative-and-fractional -> SOLUTION: Rewrite & simplify the given expression using positive exponents only. (square root x^-5 + x^-5y^7z^-2)(x^9y^-2z^9) Only x^-5 is a square root      Log On

 Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations! Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help!

 Algebra: Negative and Fractional exponents Solvers Lessons Answers archive Quiz In Depth

 Question 430116: Rewrite & simplify the given expression using positive exponents only. (square root x^-5 + x^-5y^7z^-2)(x^9y^-2z^9) Only x^-5 is a square rootAnswer by haileytucki(390)   (Show Source): You can put this solution on YOUR website!~ = square root of in this answer (~(x^(-5))+x^(-5)y^(7)z^(-2))(x^(9)y^(-2)z^(9)) Pull all perfect square roots out from under the radical. In this case, remove the x^(-3) because it is a perfect square. (x^(-3)~(x)+x^(-5)y^(7)z^(-2))(x^(9)y^(-2)z^(9)) Move all negative exponents from the numerator to the denominator and make the exponents positive. A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). (x^(-3)~(x)+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9)) Remove the negative exponent in the numerator by rewriting x^(-3)~(x) as (~(x))/(x^(3)). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). ((~(x))/(x^(3))+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9)) To add fractions, the denominators must be equal. The denominators can be made equal by finding the least common denominator (LCD). In this case, the LCD is x^(5)z^(2). Next, multiply each fraction by a factor of 1 that will create the LCD in each of the fractions. ((~(x))/(x^(3))*(x^(2)z^(2))/(x^(2)z^(2))+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9)) Complete the multiplication to produce a denominator of x^(5)z^(2) in each expression. ((x^(2)z^(2)~(x))/(x^(5)z^(2))+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9)) Combine the numerators of all expressions that have common denominators. ((x^(2)z^(2)~(x)+y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9)) Remove the negative exponent in the numerator by rewriting x^(9)y^(-2)z^(9) as (x^(9)z^(9))/(y^(2)). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). ((x^(2)z^(2)~(x)+y^(7))/(x^(5)z^(2)))((x^(9)z^(9))/(y^(2))) Multiply ((x^(2)z^(2)~(x)+y^(7)))/(x^(5)z^(2)) by (x^(9)z^(9))/(y^(2)) to get (x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2)). ((x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2))) Remove the parentheses around the expression (x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2)). (x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2))