SOLUTION: If {{{(a+b)^(1/2)=(a-b)^(-1/2)}}}, which of the following must be true? a) b=0 b) a+b=1 c) a-b=1 d) a^2+b^2=1 e) a^2-b^2=1

Algebra ->  Exponents-negative-and-fractional -> SOLUTION: If {{{(a+b)^(1/2)=(a-b)^(-1/2)}}}, which of the following must be true? a) b=0 b) a+b=1 c) a-b=1 d) a^2+b^2=1 e) a^2-b^2=1      Log On


   



Question 23389: If %28a%2Bb%29%5E%281%2F2%29=%28a-b%29%5E%28-1%2F2%29, which of the following must be true?
a) b=0
b) a+b=1
c) a-b=1
d) a^2+b^2=1
e) a^2-b^2=1

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
sqrt(a+b) = 1/sqrt(a-b)
Multiply both sides by sqrt(b-a) to get:
sqrt(a^2-b^2)=1
Square both sides to get a^2-b^2=1
Cheers,
stan H.