| 
 
 
 
Question 1141352:  integrate sec^2x dx 
 Answer by rothauserc(4718)      (Show Source): 
You can  put this solution on YOUR website! integral of sec^2 (x) dx = integral of 1/cos^2 (x) dx =  
: 
((sin^2 (x) + cos^2 (x))/cos^2 (x)) dx  
: 
I used the identity sin^2 (x) + cos^2 (x) = 1 
: 
Note the derivative of sin(x)/cos(x) = ((cos(x) * cos(x) - sin(x) * -sin(x))/cos^2 (x)) dx = ((cos^2 (x)+ sin^2 (x))/cos^2 (x)) dx = (1/cos^2 (x)) dx = sec^2 (x) dx 
: 
let u = tan(x) = sin(x)/cos(x) 
: 
du = (1/cos^2 (x)) dx, then 
: 
****************************************************************** 
integral of sec^2 (x) dx = integral of u du = u = tan(x) +constant 
****************************************************************** 
: 
  | 
 
  
 
 |   
 
 |   
 |  |