Question 136259
I can plot this data on a straight line, otherwise called 
a linear plot. The problem doesn't say I can do this, but
it doesn't exclude it either, and it's the simplest thing
to do. I'm going to plot both cost/chip 
and price/chip vs chips produced/wk
In plotting, the vertical axis is always the data that
RESULTS when changes are made on the x-axis.
So, the y-axis is cost/chip and price/chip. The x-axis is chips
produced/wk. I can plot 2 points for cost and 2 points for price
which gives me 2 straight lines.
---------------
For cost/chip:
First point:
{{{x = 100000}}}
{{{y = 40}}}
Second point:
{{{x = 125000}}}
{{{y = 35}}}
---------------
For price/chip:
first point:
{{{x = 100000}}}
{{{y = 65}}}
Second point:
{{{x = 125000}}}
{{{y = 63}}}
---------------
I use the formula
{{{(y[2] - y[1]) / (x[2] - x[1]) = (y - y[1]) / (x - x[1])}}}
I'll scale the x-axis so 1 unit = 10000 units
----------------
For cost/chip vs production/wk
{{{(35 - 40) / (12.5 - 10) = (y - 40) / (x - 10)}}}
{{{(-5)/2.5 = (y - 40) / (x - 10)}}}
{{{(-2)*(x - 10) = y - 40}}}
{{{y = -2x + 60}}}
For price/chip vs production/wk
{{{(63 - 65) / (12.5 - 10) = (y - 65) / (x - 10)}}}
{{{(-2) / 2.5 = (y - 65) / (x - 10)}}}
{{{(-.8)*(x - 10) = y - 65}}}
{{{y = -.8x + 73}}}
One way to check these lines is to plot them
{{{ graph( 600, 600, -1, 20, -5, 85, -2x + 60, -.8x + 73) }}}  
At 13,000 chips/wk (13 on the graph), the profit is the difference 
in the y-coordinates (price - cost)
cost:
{{{y = -2x + 60}}}
{{{y = -2*13 + 60}}}
{{{y = 34}}}
price:
{{{y = -.8x + 73}}}
{{{y = -.8*13 + 73}}}
{{{y = 62.6}}}
price - cost = {{{62.6 - 34 = 28.6}}}
The profit at 130,000 chips/wk is $28.60 /chip