Question 136222
19x^3y^4z^5 DIVIDED BY 9xy^3z^2

{{{(19x^3y^4z^5)/(9xy^3z^2)}}}
Write every base as a multiplier as many times as the exponent:
{{{(19xxxyyyyzzzzz)/(9xyyyzz)}}}
Put parentheses around each factor 
{{{((19)(x)(x)(x)(y)(y)(y)(y)(z)(z)(z)(z)(z))/((9)(x)(y)(y)(y)(z)(z))}}}
Cancel whatever will cancel between numerator and denominator
{{{((19)cross((x))(x)(x)cross((y))cross((y))cross((y))(y)cross((z))cross((z))(z)(z)(z))/((9)cross((x))cross((y))cross((y))cross((y))cross((z))cross((z)))}}}
Eliminate what canceled
{{{((19)(x)(x)(y)(z)(z)(z))/((9))}}}
Take away the parentheses
{{{(19xxyzzz)/9}}}
Write as exponents
{{{(19x^2yz^3)/9}}}
------------------------------------
Shorter way:

Give the x in the bottom the exponent 1
{{{(19x^3y^4z^5)/(9x^1y^3z^2)}}}

Subtract exponents and eliminate the one with the 
smaller exponent:
{{{(19x^(3-1)y^(4-3)z^(5-2))/9}}}
Simplify
{{{(19x^2y^1z^3)/9}}}
Erase the 1 exponent:
{{{(19x^2yz^3)/9}}}

Edwin