Question 135804
The answer is based on one rule. It is:
{{{log(a,b) + log(a,c) + log(a,d) = log(a,bcd)}}}
You can verify it with numbers
{{{log(2,4) + log(2,8) + log(2,16) = log(2,4*8*16)}}}
{{{2 + 3 + 4 = log(2,512)}}}
{{{9 = log(2,512)}}}
{{{2^9 = 512}}}
{{{512 = 512}}}
---------------------------
{{{2*log(4,(2x+3)) + 3*log(4,(4x+4))}}}
This can be rewritten as:
{{{log(4,(2x+3)) + log(4,(2x+3)) + log(4,(4x+4)) + log(4,(4x+4)) +log(4,(4x+4))}}}
Following the above rule,
{{{log(4,(2x+3)(2x+3)) + log(4,(4x+4)(4x+4)(4x+4))}}}
{{{log(4,(2x+3)^2) + log(4,(4x+4)^3)}}}
Now apply the rule one more time
{{{log(4,(2x+3)^2*(4x+4)^3)}}} answer