Question 133982
There are many ways:


{{{f(x)=x}}}, {{{g(x)=6/(x^2+8)}}}, so h(x)=(fºg)(x)={{{f(g(x))=f(6/(x^2+8))=6/(x^2+8)}}}


{{{f(x)=6/(x+8)}}}, {{{g(x)=x^2}}}, so h(x)=(fºg)(x)={{{f(g(x))=f(x^2)=6/(x^2+8)}}}


{{{f(x)=1/x}}}, {{{g(x)=(x^2+8)/6}}}, so so h(x)=(fºg)(x)={{{f(g(x))=f((x^2+8)/6)=6/(x^2+8)}}}


{{{f(x)=6/x}}}, {{{g(x)=x^2+8}}}, so h(x)=(fºg)(x)={{{f(g(x))=f(x^2+8)=6/(x^2+8)}}}


Take your pick