Question 133319
Given: log5(-2500) = log5(5^n+2 minus 5^n+3)

So {{{-2500 = 5^(n+2) - 5^(n+3) }}}
{{{-2500 = 5^n * 5^2 - 5^n * 5^3}}}
{{{-2500 = 25* (5^n) -125 * (5^n) }}}
{{{-2500 = -100 * (5^n)}}}
{{{25 = 5^n}}}
n = 2