Question 133228
{{{sqrt(810)+sqrt(240)-sqrt(250)}}} Start with the given expression



{{{9*sqrt(10)+sqrt(240)-sqrt(250)}}} Simplify {{{sqrt(810)}}} to get {{{9*sqrt(10)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{9*sqrt(10)+4*sqrt(15)-sqrt(250)}}} Simplify {{{sqrt(240)}}} to get {{{4*sqrt(15)}}}.



{{{9*sqrt(10)+4*sqrt(15)-5*sqrt(10)}}} Simplify {{{sqrt(250)}}} to get {{{5*sqrt(10)}}}.



{{{4*sqrt(10)+4*sqrt(15)}}} Combine like terms





-----------------------------------------


Answer:


So {{{sqrt(810)+sqrt(240)-sqrt(250)}}} simplifies to {{{4*sqrt(10)+4*sqrt(15)}}}. In other words,  {{{sqrt(810)+sqrt(240)-sqrt(250)=4*sqrt(10)+4*sqrt(15)}}}