Question 132721
1# question: find the equation of the line, find the slope and y-intercept, plot the points and line.
1. (5,20), (15,5)
2. (14,4), (15,2)
==============================
We first will find th slope;
{{{s=(y1-y2)/(x1-x2)}}}
{{{s=(20-5)/(5-15)=15/-10}}}
{{{s=-3/2}}}
Now lets find y-intercept, which in the slope-intercept form y=mx+b, the b=y-intercept;m=slope
We take either one of the points, and plug them into the equation;
{{{20=-(3/2)5+b}}}, now we solve for b;
{{{20=(-15/2)+b}}}
{{{20+15/2=b}}}
like denominators to add whole number with fraction;
{{{(40/2)+(15/2)=b}}}
{{{55/2=b}}}
{{{44(1/2)=b}}}
So our equation will be;
{{{y=-3/2x+44(1/2)}}}
-----------------------------------
(14,4), (15,2)
{{{s=(4-2)/(14-15)}}}
{{{s=2/-1}}}
{{{y=-2x+b}}}
{{{4=-2(14)+b}}}
{{{4=-28+b}}}
{{{4+28=b}}}
{{{b=32}}}
So our equation is;
y=-2x+32
=======================================
2# question: find the slope and y-intercept, plot the line.
1. y= 6x + 3
2. y=2x + 10
3. y + 5 = x
------------------------
1. s=6, y-intercept=3
{{{graph (400,400, -12,12,-12,12, 6x+3)}}}
2. s=2 y-intercept=10
{{{graph (300,300, -8,8,-8,18, 2x+10)}}}
-----------------------------------------------

3.{{{( y + 5)/4 = x }}}
   Let's first put this in slope-intercept form;
Multiply each side by 4,
y+5=4x
then subtract 5 from each side;
y=4x-5
Now graph:
{{{graph (300,300, -10,10,-10,10, 4x-5)}}}
4.  {{{(y-10/-5) = x}}}
 Let's do the same here;
multiply each side by -5;
y-10=-5x
subtract 10 from each side;
y=-5x+10
{{{graph (300,300, -10,12,-10,12, -5x+10)}}}
   
:)