Question 132146


{{{(5x+8)(4x^2+3x+2)}}} Start with the given expression




{{{5x(4x^2+3x+2)+8(4x^2+3x+2)}}} Expand the expression. Remember something like {{{(a+b)(c+d+e)}}} expands to {{{a(c+d+e)+b(c+d+e)}}}



{{{(5x)*(4x^2)+(5x)*(3x)+(5x)*(2)+(8)*(4x^2)+(8)*(3x)+(8)*(2)}}} Distribute



{{{20x^3+15x^2+10x+32x^2+24x+16}}} Multiply



{{{47x^2+20x^3+34x+16}}} Combine like terms




{{{20x^3+47x^2+34x+16}}} Now rearrange the terms in descending order



So {{{(5x+8)(4x^2+3x+2)}}} expands and simplifies to {{{20x^3+47x^2+34x+16}}}.


In other words, {{{(5x+8)(4x^2+3x+2)=20x^3+47x^2+34x+16}}}





If you need more help with multiplying polynomials, check out this <a href="http://calc101.com/webMathematica/long-multiply.jsp">Long Multiplication Calculator</a>