Question 130890
{{{2*log5(x)}}}-{{{log5(2)}}}={{{log5(2x+6)}}}

Rewrite it:

{{{log5(x^2)}}} - {{{log5(2)}}} = {{{log5(2x+6)}}}

Then

{{{log5(x^2/2)}}} = {{{log5(2x+6)}}}

{{{x^2/2 = 2x+6}}}

multiply 2 on both sides you get,

{{{x^2=4x+12}}}

solve this equation

{{{x^2-4x-12=0}}}

you get

(x-6)(x+2) = 0,


so x = 6, or x=-2.

But negative number is not allowed in this problem,

so the final answer is  x=6.