Question 129955
Let {{{A}}}=area
Let {{{w}}}=width
Let {{{l}}}=length
{{{A = 60}}}
{{{A = w*l}}}
{{{l = 4w - 1}}}
{{{A = w*(4w - 1}}}
{{{60 = w*(4w - 1)}}}
{{{60 = 4w^2 - w}}}
{{{4w^2 - w - 60 = 0}}}
Use the quadratic formula to find roots
{{{w = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
This is used when equation is in the form
{{{aw^2 + bw + c = 0}}}
{{{a = 4}}}
{{{b = -1}}}
{{{c = -60}}}
{{{w = (-(-1) +- sqrt( (-1)^2-4*4*(-60) ))/(2*4) }}}
{{{w = (1 +- sqrt( 1 + 960 ))/ 8 }}}
{{{w = (1 +- 31) / 8}}}
{{{w = (1 + 31) / 8}}}
{{{w = 32/8}}}
{{{w = 4}}} 
{{{w = (1 - 31) / 8}}}
This gives a negative answer, so I can't use it
{{{l = 4w - 1}}}
{{{l = 4*4 - 1}}}
{{{l = 15}}}
The dimensions are 4 x 15
check answer:
{{{60 = w*(4w - 1)}}}
{{{60 = 4*(16 - 1)}}}
{{{60 = 4*15}}}
{{{60 = 60}}}
OK