Question 127401
{{{((z^2-64)/(z))/((z-8)/(z+1))}}} Start with the given expression


{{{((z^2-64)/(z))*((z+1)/(z-8))}}} Multiply the first fraction by the reciprocal of the second fraction



{{{(((z+8)(z-8))/(z))((z+1)/(z-8))}}}   Factor {{{z^2-64}}} to get {{{(z+8)(z-8)}}} 



{{{(z+8)(z-8)(z+1)/(z)(z-8)}}} Combine the fractions



{{{(z+8)cross((z-8))(z+1)/(z)cross((z-8))}}} Cancel like terms



{{{(z+8)(z+1)/z}}} Simplify



--------------------------------------------------

Answer:


So {{{((z^2-64)/(z))((z+1)/(z-8))}}} simplifies to {{{(z+8)(z+1)/z}}}. In other words {{{((z^2-64)/(z))((z+1)/(z-8))=(z+8)(z+1)/z}}}