Question 127403
{{{((f+8)/(f-1))/((6f+48)/(f-2))}}} Start with the given expression


{{{((f+8)/(f-1))*((f-2)/(6f+48))}}} Multiply the first fraction by the reciprocal of the second fraction




{{{((f+8)/(f-1))((f-2)/(6(f+8)))}}}   Factor {{{6f+48}}} to get {{{6(f+8)}}} 



{{{(f+8)(f-2)/6(f-1)(f+8)}}} Combine the fractions



{{{cross((f+8))(f-2)/6(f-1)cross((f+8))}}} Cancel like terms



{{{(f-2)/6(f-1)}}} Simplify





----------------------------------------


Answer:


So {{{((f+8)/(f-1))/((6f+48)/(f-2))}}} simplifies to {{{(f-2)/6(f-1)}}}



In other words,  {{{((f+8)/(f-1))/((6f+48)/(f-2))=(f-2)/6(f-1)}}}