Question 127293
Factor {{{35b^8c^2}}} to get 5*7*b*b*b*b*b*b*b*b*c*c

Factor {{{7b^4c^8}}} to get 7*b*b*b*b*c*c*c*c*c*c*c*c

Factor {{{15b^9c^2}}} to get 3*5*b*b*b*b*b*b*b*b*b*c*c



Now highlight the unique terms. Remember, highlight the most frequent terms



<font color=red>5</font>*7*b*b*b*b*b*b*b*b*c*c



<font color=red>7</font>*b*b*b*b*<font color=red>c*c*c*c*c*c*c*c</font>



<font color=red>3</font>*5*<font color=red>b*b*b*b*b*b*b*b*b</font>*c*c



Now multiply all of the highlighted terms:


3*5*7*b*b*b*b*b*b*b*b*b*c*c*c*c*c*c*c*c


Multiply and simplify


105b^9c^8



----------------------------

Answer:


So the lcm of 35b^8c^2, 7b^4c^8, and 15b^9c^2 is



105b^9c^8