Question 127153
{{{y^3 + 8y^2 + 16y}}} …factor

{{{y(y^2 + 8y + 16)}}}…..replace {{{8y}}} with {{{4y + 4y}}}  

{{{y(y^2 + 4y + 4y + 16)}}}…..group first 2 terms and second 2 terms together

{{{y((y^2 + 4y) + (4y + 16))}}}…..

{{{y(y(y+ 4) + 4(y + 4))}}}…..
	
{{{y(y+ 4) (y + 4)}}}…..


{{{y^2 -8y}}}…factor

{{{y(y-8)}}}…


so, the factors of {{{y^3 + 8y^2 + 16y}}}are: {{{y}}}  {{{ (y + 4)}}}  {{{ (y + 4)}}} 

and the factors of {{{y^2 -8y}}} are: {{{y}}}  {{{ (y -8)}}}  

then 

the Least Common Multiple (LCM) for {{{y^3 + 8y^2 + 16y}}} and {{{y^2 -8y}}} will be:

{{{y (y + 4) (y + 4) (y -8)}}}