Question 126402
{{{sqrt(7a)+9*sqrt(28a^3)}}} Start with the given expression




{{{sqrt(7a)+9*2a*sqrt(7a)}}} Simplify {{{sqrt(28a^3)}}} to get {{{sqrt(28a^3)=sqrt(4*7a^2*a)=sqrt(4)*sqrt(a^2)sqrt(7a)=2a*sqrt(7a)}}}.



{{{sqrt(7a)+18a*sqrt(7a)}}} Multiply



{{{sqrt(7a)(1+18a)}}} Factor out the GCF {{{sqrt(7a)}}}



So {{{sqrt(7a)+9*sqrt(28a^3)}}} simplifies to {{{sqrt(7a)(1+18a)}}}. In other words,  {{{sqrt(7a)+9*sqrt(28a^3)=sqrt(7a)(1+18a)}}}