Question 125819

{{{(g^2-5g-14)/(g^2+g-2)}}} Start with the given expression


{{{((g-7)(g+2))/(g^2+g-2)}}}   Factor {{{g^2-5g-14}}} to get {{{(g-7)(g+2)}}} (note: if you need help with factoring, check out this <a href=http://www.algebra.com/algebra/homework/Polynomials-and-rational-expressions/change-this-name4450.solver>solver</a>)


{{{((g-7)(g+2))/((g+2)(g-1))}}}   Factor {{{g^2+g-2}}} to get {{{(g+2)(g-1)}}} 



{{{(g-7)(g+2)/(g+2)(g-1)}}} Combine the fractions



{{{(g-7)cross((g+2))/cross((g+2))(g-1)}}} Cancel like terms



{{{(g-7)/(g-1)}}} Simplify



--------------------------------------------------

Answer:


So {{{(g^2-5g-14)/(g^2+g-2)}}} simplifies to {{{(g-7)/(g-1)}}}. In other words {{{(g^2-5g-14)/(g^2+g-2)=(g-7)/(g-1)}}}