Question 125483
{{{(3x - 5)^2 = 12}}}
Take the square root of both sides
There are 2 square roots, + and -
{{{(3x - 5) = sqrt(12)}}}
{{{3x - 5 = 2*sqrt(3)}}}
{{{x = (2*sqrt(3) + 5) / 3}}} answer
-------------------------------------
{{{-(3x - 5) = sqrt(12)}}}
{{{-3x + 5 = 2*sqrt(3)}}}
{{{x = (5 - 2*sqrt(3)) / 3}}} answer
-------------------------------------
check the  answers
{{{(3x - 5)^2 = 12}}}
{{{(3*((2*sqrt(3) + 5) / 3) - 5)^2 = 12}}}
{{{(2*sqrt(3) + 5 - 5)^2 = 12}}}
{{{(2*sqrt(3))^2 = 12}}}
{{{4*3 = 12}}}
{{{12 = 12}}}
OK
--------------------
{{{(3x - 5)^2 = 12}}}
{{{(3*((5 - 2*sqrt(3)) / 3) - 5)^2 = 12}}}
{{{(5 - 2*sqrt(3) - 5)^2 = 12}}}
{{{(-2*sqrt(3))^2 = 12}}}
{{{4*3 = 12}}}
{{{12 = 12}}}
OK