Question 124808
Raising the imaginary unit i to a power follows a pattern that repeats on a cycle of 4.


{{{i^0=1}}}
{{{i^1=i}}}
{{{i^2=-1}}}
{{{i^3=-i}}}

Then {{{i^4=i^0=1}}} and so on.


The process is to apply the modulo function to the exponent on i.  The modulo function returns the remainder when integer division is performed.  In this case, your divisor is always 4.


{{{10/4=2}}}, remainder {{{2}}}, so 10 modulo 4 = 2 => {{{i^10=i^2=-1}}}


So, {{{(-4)/i^10=(-4)/(-1)=4}}}.  In {{{a+bi}}} form, {{{4+0i}}}