Question 124400
{{{(x^2+x+6)(x-6)}}} Start with the given expression



{{{(x-6)(x^2+x+6)}}} Rearrange the terms




{{{x(x^2+x+6)-6(x^2+x+6)}}} Expand the expression. Remember something like {{{(a+b)(c+d+e)}}} expands to {{{a(c+d+e)+b(c+d+e)}}}



{{{(x)*(x^2)+(x)*(x)+(x)*(6)+(-6)*(x^2)+(-6)*(x)+(-6)*(6)}}} Distribute



{{{x^3+x^2+6x-6x^2-6x-36}}} Multiply



{{{-5x^2+x^3-36}}} Combine like terms




{{{x^3-5x^2-36}}} Now rearrange the terms in descending order



So {{{(x^2+x+6)(x-6)}}} expands and simplifies to {{{x^3-5x^2-36}}}.


In other words, {{{(x^2+x+6)(x-6)=x^3-5x^2-36}}}





If you need more help with multiplying polynomials, check out this <a href="http://calc101.com/webMathematica/long-multiply.jsp">Long Multiplication Calculator</a>