Question 123132
quantity under a square root cannot be negative. So {{{x > 4}}}

Domain:{{{ x > 4}}}



{{{f(x)=sqrt( x+4)}}}

quantity under a square root {{{cannot}}} be {{{negative}}}; so {{{x > -4}}}

then domain is:  {{{x > - 4}}}

b) 

{{{g(x)=2x+1/(x-3)}}}

A {{{denominator }}}cannot be zero. So {{{x}}} does not equal 3.

then domain is:  {{{x > 3}}}


c) 

{{{h(x)=3x^2+5x-3}}}………… this is a parabola

domain is:  all real numbers


d) 

{{{l(x)=2x+3}}}…………………… this is a linear line

domain is:  all real numbers

e)

{{{ m(x)=3/(x^2+7)}}}

A {{{denominator }}}cannot be zero; so {{{ x^2+7< >0}}} 

or {{{x^2< >-7}}}

or {{{x< > sqrt(-7)}}}

then domain is:  {{{x > - 7}}}