Question 121048



given:

let numbers be {{{x}}} and {{{y}}}, and {{{x>y}}}
then {{{x-y =72}}}

and {{{x = 7y+6}}}

to find:{{{x}}} and {{{y}}}


 {{{x-y =72}}}....=>.... {{{x = 72 + y}}}

{{{x = 7y+6}}}........substitute {{{x}}}

{{{72 + y = 7y + 6}}}........

{{{72 - 6 = 7y - y}}}........

{{{66 = 6y }}}........

{{{66/6 = y }}}........

{{{ y = 11 }}}........


{{{x = 72 + y}}}.........substitute {{{y}}}

{{{x = 72 + 11}}}.........

{{{x = 83}}}.........


the numbers are:

{{{83}}} and {{{11}}}