Question 120835
{{{((ab+ b^2))/((4ab^5))}}}
-----------
{{{((a+b))/((6a^2b^4))}}}
:
When you divide, you invert the dividing fraction and multiply
{{{((ab+ b^2))/((4ab^5))}}} * {{{((6a^2b^4))/((a+b))}}}
:
Factor out b in the 1st numerator
{{{(b(a+ b))/((4ab^5))}}} * {{{((6a^2b^4))/((a+b))}}}
:
Cancel (a+b)'s
{{{(b)/((4ab^5))}}} * {{{(6a^2b^4)}}}
:
Cancel b in the 1st numerator into the denominator
{{{1/((4ab^4))}}} * {{{(6a^2b^4)}}} = {{{((6a^2b^4))/((4ab^4))}}} 
:
Cancel 2ab^4 out of the denominator
{{{((3a))/2}}} is the simplified fraction