Question 120824


{{{((-2a^2)/(3a^2))*((20a^2)/(15a^3))}}} Start with the given expression



{{{((-2a^2)*(20a^2))/((3a^2)*(15a^3))}}} Combine the fractions



{{{(-40a^4)/(45a^5)}}} Multiply the numerators and denominators by adding the exponents. Remember {{{x^2*x^3=x^(2+3)=x^5}}}. Don't forget to multiply the coefficients.



{{{(-8/9)a^-1}}} Divide the expression by subtracting the exponents. Remember {{{x^5/x^3=x^(5-3)=x^2}}}. Don't forget to divide the coefficients.



{{{(-8/9)(1/a)}}} Rewrite {{{a^-1}}} as {{{1/a^1=1/a}}}




{{{-8/9a}}} Combine the fractions




So {{{((-2a^2)/(3a^2))*((20a^2)/(15a^3))}}} simplifies to {{{-8/9a}}}


In other words, {{{((-2a^2)/(3a^2))*((20a^2)/(15a^3))=-8/9a}}}