Question 120326
*[Tex \LARGE \frac{8}{1+i}] Start with the given expression


*[Tex \LARGE \left(\frac{8}{1+i}\right)\left(\frac{1-i}{1-i}\right)] Multiply the fraction by *[Tex \LARGE \frac{1-i}{1-i}]. Note: *[Tex \LARGE 1-i] is the complex conjugate of *[Tex \LARGE 1+i]


*[Tex \LARGE \frac{8-8i}{2}] Foil and Multiply



*[Tex \LARGE \frac{8}{2}-\frac{8}{2}i] Break up the fraction.



*[Tex \LARGE 4-4i] Reduce. So it is now in {{{a+bi}}} form where {{{a=4}}} and {{{b=-4}}}