Question 119774
Do you want to factor?





Looking at {{{w^2+4w-84}}} we can see that the first term is {{{w^2}}} and the last term is {{{-84}}} where the coefficients are 1 and -84 respectively.


Now multiply the first coefficient 1 and the last coefficient -84 to get -84. Now what two numbers multiply to -84 and add to the  middle coefficient 4? Let's list all of the factors of -84:




Factors of -84:

1,2,3,4,6,7,12,14,21,28,42,84


-1,-2,-3,-4,-6,-7,-12,-14,-21,-28,-42,-84 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to -84

(1)*(-84)

(2)*(-42)

(3)*(-28)

(4)*(-21)

(6)*(-14)

(7)*(-12)

(-1)*(84)

(-2)*(42)

(-3)*(28)

(-4)*(21)

(-6)*(14)

(-7)*(12)


note: remember, the product of a negative and a positive number is a negative number



Now which of these pairs add to 4? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 4


<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td align="center">1</td><td align="center">-84</td><td>1+(-84)=-83</td></tr><tr><td align="center">2</td><td align="center">-42</td><td>2+(-42)=-40</td></tr><tr><td align="center">3</td><td align="center">-28</td><td>3+(-28)=-25</td></tr><tr><td align="center">4</td><td align="center">-21</td><td>4+(-21)=-17</td></tr><tr><td align="center">6</td><td align="center">-14</td><td>6+(-14)=-8</td></tr><tr><td align="center">7</td><td align="center">-12</td><td>7+(-12)=-5</td></tr><tr><td align="center">-1</td><td align="center">84</td><td>-1+84=83</td></tr><tr><td align="center">-2</td><td align="center">42</td><td>-2+42=40</td></tr><tr><td align="center">-3</td><td align="center">28</td><td>-3+28=25</td></tr><tr><td align="center">-4</td><td align="center">21</td><td>-4+21=17</td></tr><tr><td align="center">-6</td><td align="center">14</td><td>-6+14=8</td></tr><tr><td align="center">-7</td><td align="center">12</td><td>-7+12=5</td></tr></table>

None of these pairs of factors add to 4. So the expression {{{w^2+4w-84}}} cannot be factored