Question 119323
{{{((x^5)/(y^3))/((x^2)/(y^8))}}} Start with the given expression


{{{((x^5)/(y^3))*((y^8)/(x^2))}}} Multiply the first fraction by the reciprocal of the second fraction





{{{(x^5y^8)/(y^3x^2)}}} Combine the fractions




{{{x^(5-2)y^(8-3)}}} Remember when you divide monomials, you subtract their corresponding exponents. For instance {{{x^2/x^3=x^(2-3)=x^-1}}}



{{{x^3y^5}}} Simplify. 


--------------------------------------------
Answer:


So {{{((x^5)/(y^3))/((x^2)/(y^8))}}} simplifies to {{{x^3y^5}}}.


In other words, {{{((x^5)/(y^3))/((x^2)/(y^8))=x^3y^5}}}.