Question 119287
Given:

Ed can do a job in {{{4}}}{{{ days}}}

Ed and Maymay work together {{{2 (1/3)}}} {{{days}}}

How long would the job take Maymay to do it alone?

Let the completed job be equal to {{{ 1}}}

Let Maymay’s time be {{{y}}}


{{{ (2(1/3))/4 + 2(1/3)/y = 1}}}………. multiply both sides by {{{4y}}}


{{{(7/3)*y + (7/3)*4 = 4y }}}……….


{{{(7y/3) + (28/3)  = 4y }}}……….


{{{(7y/3) + (28/3)  = 4y }}}………. multiply both sides by {{{3}}}


{{{7y + 28 = 12y }}}……….


{{{ 28 = 12y - 7y  }}}……….


{{{ 28 = 5y  }}}……….


{{{ 28 /5= y  }}}……….


{{{ y = 5(3/5)  }}}……….


check	


{{{ 2(1/3)/4 + 2(1/3)/5(3/5)   = 1}}}………. 


{{{ (7/3)/(4/1) + (7/3)/(28 /5)= 1}}}………. 


{{{ 7*1/(3*4) + (7*5)/(3*28 )= 1}}}………. 


{{{ 7/(3*4) + (7*5)/(3*4*7 )= 1}}}………. 


{{{ 7/(3*4) + (cross(7)*5)/(3*4*cross(7) )= 1}}}………. 


{{{ 7/12 + 5/12 = 1}}}………. 


{{{ .58 + .42 = 1}}}………. 


{{{ 1 = 1}}}………