Question 118415

Given line:

{{{y=-(1/3)x+2}}}…… point-slope formula where slope {{{m}}} is {{{-1/3}}}


{{{Parallel}}} lines have {{{equal slopes}}}; {{{m[1] = m[2]}}}. 

{{{Perpendicular }}}lines have slopes whose product is {{{-1}}}; {{{m[1] * m[2]= -1}}}.

1) You need a line with slope {{{-1/3}}} 

So, le say that line is:

{{{y=-(1/3)x - 5}}}…… point-slope formula of {{{ parallel }}}line

{{{(1/3)x + y = -5}}}…… standard formula of {{{ parallel }}}line


here is the graph:


*[invoke solve_by_graphing "(1/3)", 1, 2, "(1/3)", 1, -5]




2) You need a line with slope {{{(1/3)* m[2]= -1}}}

{{{ m[2]= -(1/(1/3))}}}

{{{ m[2]= -3}}}

So, le say that line is:

{{{y= -3x - 5}}}…… point-slope formula of {{{perpendicular }}}line

{{{-3x + y = -5}}}…… standard formula of {{{perpendicular }}}line


here is the graph:


*[invoke solve_by_graphing "(1/3)", 1, 2, -3, 1, -5]