Question 118711

{{{(3x-2)(2x^2+3x-1)}}} Start with the given expression




{{{3x(2x^2+3x-1)-2(2x^2+3x-1)}}} Expand the expression. Remember for something like {{{(a+b)(c+d+e)}}} it expands to {{{a(c+d+e)+b(c+d+e)}}}



{{{(3x)*(2x^2)+(3x)*(3x)+(3x)*(-1)+(-2)*(2x^2)+(-2)*(3x)+(-2)*(-1)}}} Distribute



{{{6x^3+9x^2-3x-4x^2-6x+2}}} Multiply



{{{5x^2+6x^3-9x+2}}} Combine like terms




{{{6x^3+5x^2-9x+2}}} Now rearrange the terms in descending order



So {{{(3x-2)(2x^2+3x-1)}}} expands and simplifies to {{{6x^3+5x^2-9x+2}}}.


In other words, {{{(3x-2)(2x^2+3x-1)=6x^3+5x^2-9x+2}}}





If you need more help with multiplying polynomials, check out this <a href="http://calc101.com/webMathematica/long-multiply.jsp">Long Multiplication Calculator</a>