Question 118608
Remember, the area of any parallelogram is: Area=base * height



So in our case, the area is:


{{{A=(2x-3)(2x+3)}}}


Now let's foil the expression to get the area



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(2x)-3)(highlight(2x)+3)}}} Multiply the First terms:{{{(2x)*(2x)=4x^2}}}



{{{(highlight(2x)-3)(2x+highlight(3))}}} Multiply the Outer terms:{{{(2x)*(3)=6x}}}



{{{(2x+highlight(-3))(highlight(2x)+3)}}} Multiply the Inner terms:{{{(-3)*(2x)=-6x}}}



{{{(2x+highlight(-3))(2x+highlight(3))}}} Multiply the Last terms:{{{(-3)*(3)=-9}}}



{{{4x^2+6x-6x-9}}} Now collect every term to make a single expression




{{{4x^2-9}}} Now combine like terms




So {{{(2x-3)(2x+3)}}} foils and simplifies to  {{{4x^2-9}}}


In other words, {{{(2x-3)(2x+3)=4x^2-9}}}




---------------------

Answer:



So the area is {{{A=4x^2-9}}}