Question 117116


{{{5^(x+2)}}}={{{4^(1-x)}}}

{{{ln(5^(x+2))}}}={{{ln(4^(1-x))}}}

{{{(x+2)ln(5)}}}={{{(1-x)ln(4)}}}

{{{x*ln(5)+2*ln(5)}}}={{{1*ln(4)-x*ln(4)}}}

{{{x*ln(5)+2*ln(5)}}}={{{ln(4)-x*ln(4)}}}

{{{x*ln(5)+x*ln(4)}}}={{{ln(4)-2*ln(5)}}}

{{{(x( ln(5)+ln(4) ))/( ln(5)+ln(4) )}}}={{{( ln(4)-2*ln(5) )/( ln(5)+ln(4) ) }}}

{{{(x*(cross( ln(5)+ln(4) )))/(cross( ln(5)+ln(4)) )}}}={{{( ln(4)-2*ln(5) )/( ln(5)+ln(4) ) }}}

{{{x}}} = {{{( ln(4)-2*ln(5) )/( ln(5)+ln(4) ) }}}

{{{x}}} = {{{-.611730721}}}

Edwin</pre>