Question 118344
Given the points P(-1,-2) Q(4,2) and R(1,m) in the coordinate plane. find the value of m so that PR + PQ is minimum.
---------------
PR = sqrt[(m+2)^2+(1+1)^2] = sqrt[m^2+2m+5]
PQ = sqrt[(2+2)^2+(4+1)^2] = sqrt[41]
--------------
PR + PQ = sqrt[m^2+2m+5] + sqrt[41]
--------------
To minimize the sum we need to minimize m^2+2m+5:
That occurs when m = -b/2a = -2/2 = -1
--------------
Cheers,
Stan H.