Question 118220

{{{sqrt(50)+2*sqrt(32)-sqrt(8)}}} Start with the given expression



{{{5*sqrt(2)+2*sqrt(32)-sqrt(8)}}} Simplify {{{sqrt(50)}}} to get {{{5*sqrt(2)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{5*sqrt(2)+2*4*sqrt(2)-sqrt(8)}}} Simplify {{{sqrt(32)}}} to get {{{4*sqrt(2)}}}.



{{{5*sqrt(2)+2*4*sqrt(2)-2*sqrt(2)}}} Simplify {{{sqrt(8)}}} to get {{{2*sqrt(2)}}}.



{{{5*sqrt(2)+8*sqrt(2)-2*sqrt(2)}}} Multiply 2 and 4 to get 8.

 

Since we have the common term {{{sqrt(2)}}}, we can combine like terms


{{{(5+8-2)sqrt(2)}}} Combine like terms. Remember, {{{5x+3x-4x=(5+3-4)x=4x}}}



{{{11*sqrt(2)}}} Now simplify {{{5+8-2}}} to get {{{11}}}


So {{{sqrt(50)+2*sqrt(32)-sqrt(8)}}} simplifies to {{{11*sqrt(2)}}}. In other words,  {{{sqrt(50)+2*sqrt(32)-sqrt(8)=11*sqrt(2)}}}