Question 118062

{{{sqrt(63)-2*sqrt(28)+5*sqrt(7)}}} Start with the given expression



{{{3*sqrt(7)-2*sqrt(28)+5*sqrt(7)}}} Simplify {{{sqrt(63)}}} to get {{{3*sqrt(7)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{3*sqrt(7)-2*2*sqrt(7)+5*sqrt(7)}}} Simplify {{{sqrt(28)}}} to get {{{2*sqrt(7)}}}.




{{{3*sqrt(7)-4*sqrt(7)+5*sqrt(7)}}} Multiply 2 and 2 to get 4.

 

Since we have the common term {{{sqrt(7)}}}, we can combine like terms


{{{(3-4+5)sqrt(7)}}} Combine like terms. Remember, {{{5x+3x-4x=(5+3-4)x=4x}}}



{{{4*sqrt(7)}}} Now simplify {{{3-4+5}}} to get {{{4}}}


So {{{sqrt(63)-2*sqrt(28)+5*sqrt(7)}}} simplifies to {{{4*sqrt(7)}}}. In other words,  {{{sqrt(63)-2*sqrt(28)+5*sqrt(7)=4*sqrt(7)}}}