Question 117354
Find the sum of the series
1 + 2x + 3x^2 + 4x^3 ...

I cannot understand how to find the ratio

Like 
1 + 2x + 3x^2 + 4x^3 ...
--\/---\/-------\/--------
--2x---1.5x---1.33x

Now what?<pre><font size = 4><b>  
----------------------------------------------------
Since the ratios are not equal, you have
shown this series is not a geometric series.

1 + 2x + 3x<sup>2</sup> + 4x<sup>3</sup> ...

I hope you are taking calculus, for ordinary
algebra cannot handle this sort of problem.
 
If we take the antiderivative term by term,
we get

x + x<sup>2</sup> + x<sup>3</sup> + x<sup>4</sup> + ··· + C

and this, all except for the arbitrary constant C IS 
a geometric series with a<sub>1</sub> = x and r = x

Now we use the formula for the sum of an infinite
geometric series:

       a<sub>1</sub>
S<sub><font face = "symbol">¥</font></sub> = —————
      1-r

       x
S<sub><font face = "symbol">¥</font></sub> = —————
      1-x
                               x
x + x<sup>2</sup> + x<sup>3</sup> + x<sup>4</sup> + ··· + C = —————
                              1-x

So now we take the derivative term by term
and get:
                                (1-x)(1) - x(-1)
1 + 2x + 3x<sup>2</sup> + 4x<sup>3</sup> + ··· + 0 = ——————————————————
                                    (1-x)<sup>2</sup>
   1 - x + x
= ———————————
     (1-x)<sup>2</sup>  

     1
= ————————
   (1-x)<sup>2</sup>

Edwin</pre>