Question 117470
 A landscape designer has to design a retangular pad of concrete at the centre of a rock garden. The length must be less than or equal to twice the width; the perimeter must be less than or equal to 40m; and the area must be greater than or equal to 60m^2
<pre><b>
>>......The length must be less than or equal to twice the width...<<

L <u><</u> 2W

>>...the perimeter must be less than or equal to 40m...<<

Perimeter = 2L + 2W <u><</u> 40

>>......and the area must be greater than or equal to 60m^2...<<

Area = LW <u>></u> 60

So we have these three facts:

1.   L <u><</u> 2W
2.   2L + 2W <u><</u> 40
3.   LW <u>></u> 60

Solve #2 for 2W:  2W <u><</u> 40 - 2L

Putting this together with #1: 

L <u><</u> 2W <u><</u> 40 - 2L

Add 2L to all three sides:    

3L <u><</u> 2W + 2L <u><</u> 40

So  
     3L <u><</u> 40

4.   L <u><</u> {{{40/3}}}

Solve #3 for L:               

     L <u>></u> {{{60/W}}}

or {{{60/W}}} <u><</u> L 

Put that together with #4

{{{60/W}}} <u><</u> L <u><</u> {{{40/3}}} 

So

{{{60/W}}} <u><</u> {{{40/3}}}
  
        60 <u><</u> {{{40/3}}}W

       180 <u><</u> 40W

   {{{180/40}}} <u><</u> W  
  
      {{{9/2}}} <u><</u> W

or            W <u>></u> {{{9/2}}} 

So since L <u><</u> {{{40/3}}} and  W <u>></u> {{{9/2}}}

The length must be less than or equal to 13{{{1/3}}} m.
The width must be greater than or equal to 4{{{1/2}}} m.

Edwin</pre>