Question 117924
{{{((2x^2+5x-12)/(9x^2))/((2x^2-7x+6)/(3x^2-x-4))}}} Start with the given expression


{{{((2x^2+5x-12)/(9x^2))*(((3x^2-x-4))/((2x^2-7x+6)))}}} Multiply the first fraction by the reciprocal of the second fraction



{{{(((x+4)(2x-3))/(9x^2))((3x^2-x-4)/(2x^2-7x+6))}}}   Factor {{{2x^2+5x-12}}} to get {{{(x+4)(2x-3)}}} 


{{{(((x+4)(2x-3))/(9(x^2)))((3x^2-x-4)/(2x^2-7x+6))}}}   Factor {{{9x^2}}} to get {{{9(x^2)}}} 


{{{(((x+4)(2x-3))/(9(x^2)))(((3x-4)(x+1))/(2x^2-7x+6))}}}   Factor {{{3x^2-x-4}}} to get {{{(3x-4)(x+1)}}} 


{{{(((x+4)(2x-3))/(9(x^2)))(((3x-4)(x+1))/((x-2)(2x-3)))}}}   Factor {{{2x^2-7x+6}}} to get {{{(x-2)(2x-3)}}} 



{{{(x+4)(2x-3)(3x-4)(x+1)/9(x^2)(x-2)(2x-3)}}} Combine the fractions




{{{(x+4)cross((2x-3))(3x-4)(x+1)/9(x^2)(x-2)cross((2x-3))}}} Cancel like terms




{{{(x+4)(3x-4)(x+1)/9x^2(x-2)}}} Simplify