Question 414908
<pre>
solve log(base a)x= 2log (base a)3+ log(base a)5

To this author, this equation is: {{{log (a, (x)) = 2*log (a, (3)) + log (a, (5))}}}, and the answer, most defintely, 
is NOT x = 5*a^6, as the other person states.

{{{log (a, (x)) = 2*log (a, (3)) + log (a, (5))}}}, <font color = red><font size = 4><b>with x > 0</font></font></b>
{{{log (a, (x)) = log (a, (3^2)) + log (a, (5))}}} -- Applying {{{d*log (b, (c))}}} = {{{log (b, (c^d))}}}
{{{log (a, (x)) = log (a, (3^2 * 5))}}} --------- Applying {{{log (b,(c)) + log (b, (d))}}} = {{{log (b, (c*d))}}}
{{{log (a, (x)) = log (a, (45))}}}
     <font color = red><font size = 4><b>x = 45</font></font></b> ---- Applying c = d, if {{{log (b, (c)) = log (b, (d))}}}</pre>