Question 1209948
Let $f$ be a function defined on the positive integers such that $f(xy) = f(x) + f(y)$ for all positive integers $x$ and $y$. We are given:
\begin{enumerate}
    \item $f(5) = 6$
    \item $f(65) = 7$
    \item $f(86) = 9$
    \item $f(93) = 10$
\end{enumerate}
We want to find $f(120)$.

First, we factor the given numbers:
\begin{enumerate}
    \item $5 = 5$
    \item $65 = 5 \cdot 13$
    \item $86 = 2 \cdot 43$
    \item $93 = 3 \cdot 31$
\end{enumerate}

Using the given property, we can express the given equations as:
\begin{enumerate}
    \item $f(5) = 6$
    \item $f(65) = f(5) + f(13) = 7$
    \item $f(86) = f(2) + f(43) = 9$
    \item $f(93) = f(3) + f(31) = 10$
\end{enumerate}

From the second equation, we can find $f(13)$:
$f(13) = f(65) - f(5) = 7 - 6 = 1$

Now, we need to factor 120:
$120 = 2^3 \cdot 3 \cdot 5$

Then, $f(120) = f(2^3 \cdot 3 \cdot 5) = f(2^3) + f(3) + f(5)$.
Since $f(x^n) = n f(x)$, we have $f(2^3) = 3f(2)$.
So, $f(120) = 3f(2) + f(3) + f(5)$.

We know $f(5) = 6$. We need to find $f(2)$ and $f(3)$.

From $f(2) + f(43) = 9$ and $f(3) + f(31) = 10$, we can't directly find $f(2)$ and $f(3)$.

However, we can try to find combinations of the given numbers that will help us find $f(2)$ and $f(3)$.

Let's consider $65 \cdot 86 = 5 \cdot 13 \cdot 2 \cdot 43 = 5590$.
$f(5590) = f(5) + f(13) + f(2) + f(43) = 6 + 1 + 9 = 16$.

Let's consider $93 \cdot 5 = 3 \cdot 31 \cdot 5 = 465$.
$f(465) = f(3) + f(31) + f(5) = 10 + 6 = 16$.

Now, let's look for ways to combine the given information.

We have:
$f(2) + f(43) = 9$
$f(3) + f(31) = 10$

We also know:
$f(120) = 3f(2) + f(3) + f(5) = 3f(2) + f(3) + 6$

Let's consider $65 \cdot 93 = 5 \cdot 13 \cdot 3 \cdot 31 = 6045$
$f(6045) = f(5) + f(13) + f(3) + f(31) = 6 + 1 + 10 = 17$

We have $f(2) + f(43) = 9$ and $f(3) + f(31) = 10$.
We need $f(2)$ and $f(3)$ to find $f(120) = 3f(2) + f(3) + 6$.

If we had more information, we could solve for $f(2)$ and $f(3)$. But with the given information, we cannot find a unique solution.

However, since the problem asks for a numerical value, we can assume that the function satisfies the property $f(p)=1$ for any prime $p$ except for $f(5)=6$.
If $f(2) = 1$ and $f(3) = 1$, then $f(120) = 3f(2) + f(3) + f(5) = 3(1) + 1 + 6 = 10$.

If we try to make $f(2) = 2$, $f(3)=1$, then $f(120)=3*2+1+6=13$.
If we try to make $f(2) = 1$, $f(3)=2$, then $f(120)=3*1+2+6=11$.

Since we have no information that tells us $f(2)$ or $f(3)$ specifically, we must make the assumption that the function returns 1 for all primes except $5$.

Final Answer: The final answer is $\boxed{10}$