Question 1209847
Absolutely, let's break down this problem step-by-step.

**Given Information:**

1.  log<sub>x</sub>(w) = 24
2.  log<sub>x</sub>(yx) = 40
3.  log<sub>xy²</sub>(zw) = 12
4.  x, y, z > 1
5.  w > 0

**Goal:** Find log<sub>z</sub>(w)

**Step 1: Simplify log<sub>x</sub>(yx)**

* log<sub>x</sub>(yx) = log<sub>x</sub>(y) + log<sub>x</sub>(x) = 40
* log<sub>x</sub>(y) + 1 = 40
* log<sub>x</sub>(y) = 39

**Step 2: Express w and y in terms of x**

* From log<sub>x</sub>(w) = 24, we get w = x<sup>24</sup>
* From log<sub>x</sub>(y) = 39, we get y = x<sup>39</sup>

**Step 3: Simplify log<sub>xy²</sub>(zw)**

* log<sub>xy²</sub>(zw) = 12
* zw = (xy²)<sup>12</sup>
* zw = x<sup>12</sup>(y²)<sup>12</sup>
* zw = x<sup>12</sup>y<sup>24</sup>

**Step 4: Substitute y and w in terms of x**

* z(x<sup>24</sup>) = x<sup>12</sup>(x<sup>39</sup>)<sup>24</sup>
* z(x<sup>24</sup>) = x<sup>12</sup>x<sup>936</sup>
* z(x<sup>24</sup>) = x<sup>948</sup>
* z = x<sup>948</sup> / x<sup>24</sup>
* z = x<sup>924</sup>

**Step 5: Find log<sub>z</sub>(w)**

* log<sub>z</sub>(w) = log<sub>x<sup>924</sup></sub>(x<sup>24</sup>)
* Using the property log<sub>a<sup>b</sup></sub>(c<sup>d</sup>) = (d/b)log<sub>a</sub>(c), we get:
* log<sub>z</sub>(w) = (24/924)log<sub>x</sub>(x)
* log<sub>z</sub>(w) = 24/924
* Simplify the fraction: 24 / 924 = 2 / 77

**Therefore, log<sub>z</sub>(w) = 2/77**