Question 1174250
Let's break down this problem step-by-step.

**Understanding the Data**

* We have two data points:
    * (500 mL, Php 80)
    * (1000 mL, Php 130)

**A. Finding the Slope**

* Let's use the slope formula: m = (y2 - y1) / (x2 - x1)
    * Where:
        * (x1, y1) = (500, 80)
        * (x2, y2) = (1000, 130)

* Substitute the values:
    * m = (130 - 80) / (1000 - 500)
    * m = 50 / 500
    * m = 1/10 or 0.1

* Therefore, the slope is 0.1 (Php per mL).

**B. Finding the Linear Function**

* We'll use the point-slope form of a linear equation: y - y1 = m(x - x1)
    * Using the point (500, 80) and the slope m = 0.1:
        * y - 80 = 0.1(x - 500)
        * y - 80 = 0.1x - 50
        * y = 0.1x - 50 + 80
        * y = 0.1x + 30

* Therefore, the linear function is y = 0.1x + 30.

**C. Finding the Cost of 750 mL**

* Substitute x = 750 mL into the linear function:
    * y = 0.1(750) + 30
    * y = 75 + 30
    * y = 105

* Therefore, 750 mL of alcohol will cost Php 105.